14 Assignment 14: Pie

You might need to check the documentation of Pie occasionally.

Assignment
Introduction to types
  1. Define intriguing-word so that intriguing-word is an Atom.

    (claim intriguing-word Atom)

  2. Define lucky-num so that lucky-num is a Nat.

    (claim lucky-num Nat)

  3. Define to-go-order so that pickup-order is a (Pair Nat Atom).

    (claim to-go-order (Pair Nat Atom))

  4. Define MyFirstType so that MyFirstType is a type. NOTE: U is the type that describes all types (except itself) and is short for "the universe of types", so we have written as a claim that MyFirstType is a U (i.e. is a type).

    (claim MyFirstType U)

  5. Define my-thing-and-atom so that my-thing-and-atom is a (Pair MyFirstType U).

    (claim my-thing-and-Atom (Pair MyFirstType U))

Nats
  1. Define and test with-Nats, a function that takes two arguments:

    • a binary function over Nats, and

    • a pair of Nats.

    The result of with-Nats should be the result of applying the function (argument 1) to the two Nats in the pair of Nats (argument 2).
    (claim with-Nats
      (-> (-> Nat Nat
            Nat)
          (Pair Nat Nat)
        Nat))
    Test your definition with
    (check-same Nat (with-Nats (λ (n m) n) (cons 1 2)) 1)
    (check-same Nat (with-Nats (λ (n m) (add1 m)) (cons 1 2)) 3)

  2. Define and test at-least-two?, it should take a Nat and return the Atom 't if its argument has at least two add1s at the top (i.e. if the Nat is >= 2), otherwise it should return the Atom 'nil. NOTE: the only Nat eliminator at-least-two? should use is which-Nat.

    (claim at-least-two?
      (-> Nat
        Atom))
    Test your definition with
    (check-same Atom (at-least-two? 0) 'nil)
    (check-same Atom (at-least-two? 1) 'nil)
    (check-same Atom (at-least-two? 41) 't)

  3. Here are the definitions of addition and multiplication.
    (claim + (-> Nat Nat
               Nat))
    (define + (λ (n m) (rec-Nat n
                         m
                         (λ (k k+m) (add1 k+m)))))
     
    (claim * (-> Nat Nat
               Nat))
    (define * (λ (n m) (rec-Nat n
                         0
                         (λ (k k*m) (+ m k*m)))))
    Define expt to be exponentiation of natural numbers.

    (claim expt (-> Nat Nat Nat))

Lists
  1. Define map.
    (claim map
      (Π ((A U)
          (B U))
        ( ( A B) (List A)
           (List B))))

  2. Define nth which returns the nth element of a list, or if n is too big, returns the default
    (claim nth
      (Π ((A U))
        ( (List A) A Nat
           A)))

Vecs
  1. Define vec-second which takes a ‘proper‘ vector and returns its second element. Introduce your own claim for this one.

Brainteasers
  1. Define and test max, a binary operator on natural numbers that returns the larger of the two numbers it is given.

  2. Define Ackermann’s function.

    (ack n m) is:
    • (add1 m) if n = 0

    • (ack (sub1 n) 1) if n has add1 at the top and m = 0

    • (ack (sub1 n) (ack n (sub1 m))) if n and m have add1 at the top

Just Dessert

Using Nat and Either, we can define a new type Integer:

(claim Integer U)
(define Integer (Either Nat Nat))

Then we can use the left part to represent negative numbers, and right part to represent non-negative numbers:

(claim minus-one Integer)
(define minus-one (left 0))
 
(claim minus-two Integer)
(define minus-two (left 1))
 
(claim minus-four Integer)
(define minus-four (left 3))
 
(claim int-zero Integer)
(define int-zero (right 0))
 
(claim plus-two Integer)
(define plus-two (right 2))
 
(claim plus-three Integer)
(define plus-three (right 3))

Define a function int-+ that takes two Integers and returns their sum as another Integer. Here are some test cases:

(check-same Integer (int-+ minus-four plus-three) minus-one)
(check-same Integer (int-+ minus-two plus-two) int-zero)
(check-same Integer (int-+ minus-two minus-two) minus-four)

You may need to refer to this page for Either.