
A Schemer’s View of Monads

Daniel P. Friedman

March 27, 2010

Lecture 1: The State Monad

This tutorial lecture is based on the first four pages of “Notions of Computation and Monads” by Eugenio
Moggi, who took the idea of monads from category theory and pointed out its relevance to programming
languages.1

Everything in these two lectures will simply be purely functional code. There will be no set!s; there will
be one call/cc to help motivate an example in the second lecture; and there will be lots of λs and lets. The
only requirement is understanding functions as values.

The goal of these two lectures is to teach how monads work. It impedes understanding if we concern
ourselves with a lot of details or sophisticated built-in tools, so we use only a very small subset of Scheme
to expose the relevant ideas. There is one program written in continuation-passing style that shows one way
of computing two values in one pass, but it is not important to understand the program. In fact, it is only
necessary to notice a single occurrence of the symbol +. There is also the continuation monad, explained
toward the end of the second lecture in section 10, and here, it might help to have some familiarity with
first-class continuations.

1 Monads in a Nutshell

A monad is a pair of functions, unitM and starM , that cooperate to do some rather interesting things. A
particular unitM , starM pair is a monad if the following monadic laws hold:

• (starM unitM) = IdentityM

• (o (starM f) unitM) = f

• (starM (o (starM f) g)) = (o (starM f) (starM g))

where o is the composition function, defined as (λ (f g) (λ (x) (f (g x)))), that takes two functions and and
composes them.

If we were in the business of handing out new monads to others, we would have to prove that the monadic
laws hold for our proposed unitM and starM , but for now, we will only be dealing with known monads. If
we wish to convince ourselves that a monad is truly a monad, we’ll need to prove these laws.

We need to write our code so that given two expressions, we can quickly observe which of the two
expressions occurs first. We call this style of writing code monadic style. Understanding how to write
in monadic style is easy if you can recognize when a function call is (and is not) a tail call with simple
arguments. Once the definition has been put in monadic style, there is a mechanism to insert “operations”
into the definition that gives the illusion of some effect. In this first lecture it will be the illusion of a settable
variable. In the second lecture, we introduce other effects.

1
See http://www.disi.unige.it/person/MoggiE/publications.html.

1

A definition in monadic style is over two functions: a unit and a star , which must form a monad. If we
start with a definition of a recursive function f that looks like this:

(define f (λ (. . .) body))

then the same function monadified will look like this:

(define f
(λ (unit star)

(if (monad? unit star)
(letrec ((f (λ (. . .) body∗)))

f))))

Unfortunately, ensuring that unit and star form a monad requires more effort than writing a simple
predicate. For now, we will assume that the programmer can trust unit and star to be a monad, simplifying
our definition.

(define f
(λ (unit star)

(letrec ((f (λ (. . .) body∗)))
f)))

We use body∗ to denote that the body is in monadic style. But, if instead of passing in a specific unit
and star , we define them globally with unique names like unitstate and starstate, then body∗ looks exactly
like it was before except that now specific units and stars are used. Making this decision allows us to use
define instead of letrec to support recursion.

(define f (λ (. . .) body∗))

Using global definitions is only one of several ways to package monads. We could have packaged these
two functions in a cons pair, a vector, an inheritable class object, etc. Generally, to support the illusion of
an effect, there will be one or more auxiliary functions that also work well with unit and star , and as we
encounter them, we will point them out. These auxiliary functions return the same kind of values as the
invocation of unit . But keep in mind that a monad is merely a pair of unit and star that satisfy the monadic
laws.

2 Types and Shapes

Consider three types of values: Pure values, denoted by a ∈ A; expressions parameterized over A, denoted by
ma ∈ MA2; and functions, denoted by sequel ∈ Sequel, that take a pure value a and return a monadic value
mb ∈ MB (pronounced “Mib”). The unitM function is “shaped” something like a value of type Sequel, but
returns a MA instead of a MB, and starM takes two (curried) arguments, a sequel and a MA, and returns
a MB. We can therefore write down the types of unitM and starM as follows.

SequelM = A → MB
unitM : A → MA
starM : SequelM → MA → MB; or SequelM → (MA → MB)

Here, the first line simply tells us that the type SequelM is an abbreviation for the type A → MB. The
following two lines tell us the types of the expressions unitM and starM , respectively. We can read the colon,
:, as “has the type”.

From the monadic laws, we know that the expression (starM unitM) is allowed, even though starM seems
to want a value of type Sequel as its first argument. Therefore, we know that unitM and a sequelM must
have a similar shape. They both consume a pure value a and return either a MA or a MB, respectively.
Furthermore, (unitM a) and ((star sequelM) ma) both return the same shape, a MA or MB, respectively.

2
A MA is the person who gave birth to you. In this first lecture, we are only looking at the state MA.

2

3 The State Monad

Here is the state monad, so called because it creates an illusion of a single variable that we can mutate.

(define unitstate ; A → MA
(λ (a)

(λ (s) ; ⇐= This function is a MA.
‘(,a . ,s))))

(define starstate ; Sequel → MA → MB or Sequel → (MA → MB)
(λ (sequel)

(λ (ma)
(λ (s) ; ⇐= This function is a MB.

(let ((p (ma s)))
(let ((new-a (car p)) (new-s (cdr p)))

(let ((mb (sequel new-a)))
(mb new-s))))))))

Let’s analyze these definitions just a bit.3 unitstate takes a pure value a ∈ A and returns a MA, a function
that expects a state s ∈ S . When the MA gets a state, a pair is returned. The pair contains a pure value
in its car and an extra value in its cdr . The pure value is passed to a sequel yielding a MB, and the extra
value is passed to the MB.

Pure values will be in the car and extra values will be in the cdr of the pair returned from an invocation
of a state MA or state MB. This reminds us that these structures always have a pure value, which can
sometimes be useless. What’s in the cdr is an extra value that supports the various illusions.

We can observe that starstate takes two (curried) values, a function Sequel and a MA, which for states
happens to be a function. Consider (λ (ma) body). Then body is a MB. But, in the definition of starstate,
ma is invoked before sequel .4 We can let pair p be the result of applying ma to some s. So, p’s car is some
pure new-a, which is passed to sequel . The result of applying sequel to the value new-a is mb, which as we
know expects a state, and that state is in p’s cdr . Thus, we can say that a ma enters with one state and a
mb ∈ MB exits with a perhaps different state.

The type information of monads tells us how we can use unit and star to define functions in monadic
style. So, now let’s look at an example. The problem is to take a nested (any depth) list of integers and
return a pair of values. The first item in the pair is the same list, except that the even numbers have been
removed, and the second item in the pair is the count of even numbers that have been deleted. We call this
function remberevensXcountevens. The cross X indicates that the function returns an eXtra value.

Before we move on to a monadic definition of remberevensXcountevens, let’s look at a simple, direct-style
definition. We start with a “driver” procedure, remberevensXcountevens 2pass, that calls off to two helpers,
remberevens pure and countevens pure.

(define remberevensXcountevens 2pass

(λ (l) ‘(,(remberevens pure l) . ,(countevens pure l))))

(define remberevens pure

(λ (l)
(cond

((null? l) ’())
((list?? (car l)) (cons (remberevens pure (car l)) (remberevens pure (cdr l))))
((odd? (car l)) (cons (car l) (remberevens pure (cdr l))))
(else (remberevens pure (cdr l))))))

3
The definitions of the various unit and star operators are more verbose than is necessary. We do this for pedagogical

reasons. Feel free to make the obvious improvements as they are noticed.
4
We define bind (spelled >>= in Haskell), which takes its two arguments ma ∈ MA and sequel ∈ Sequel , where the argument

order is the order of when things happen: (define bindstate (λ (ma sequel) ((starstate sequel) ma))).

3

(define countevens pure

(λ (l)
(cond

((null? l) 0)
((list?? (car l)) (+ (countevens pure (car l)) (countevens pure (cdr l))))
((odd? (car l)) (countevens pure (cdr l)))
(else (add1 (countevens pure (cdr l)))))))

(define list??
(λ (x)

(or (null? l) (pair? l))))

> (remberevensXcountevens 2pass ’(2 3 (7 4 5 6) 8 (9) 2))
((3 (7 5) (9)) . 5)

The remberevensXcountevens 2pass solution works, but is inefficient: it processes the list l twice. There is
a well-known way to get the same answer, and yet process the list once, but the solution requires that we
transform the code into continuation-passing style.

(define remberevensXcountevens cps

(λ (l k)
(cond

((null? l) (k ‘(() . 0)))
((list?? (car l))
(remberevensXcountevens cps (car l)

(λ (pa)
(remberevensXcountevens cps (cdr l)

(λ (pd)
(k ‘(,(cons (car pa) (car pd)) . ,(+ (cdr pa) (cdr pd)))))))))

((odd? (car l))
(remberevensXcountevens cps (cdr l)

(λ (p)
(k ‘(,(cons (car l) (car p)) . ,(cdr p))))))

(else (remberevensXcountevens cps (cdr l)
(λ (p) (k ‘(,(car p) . ,(add1 (cdr p))))))))))

> (remberevensXcountevens cps ’(2 3 (7 4 5 6) 8 (9) 2) (λ (p) p))
((3 (7 5) (9)) . 5)

Next we transform the direct-style remberevens pure into monadic style. The fourth clause is a tail call,
so it remains unchanged. In the third clause, we take the nontail call (with simple arguments) and make it
the second (curried) argument to starstate.

((starstate . . .)
(remberevens pure (cdr l)))

The context around the nontail call goes into the “. . . ” and we must have a variable to bind the result of
the call to (remberevens pure (cdr l)), so let’s call it d .

((starstate (λ (d) . . .))
(remberevens pure (cdr l)))

If we have a simple expression (one without a recursive function call) like (cons (car l) d), then to monadify
it, we use unitstate around the simple expression.

((starstate (λ (d) (unitstate (cons (car l) d))))
(remberevens pure (cdr l)))

4

Consider the second clause. Here we have two nontail (recursive) calls (with simple arguments), so we have
to sequence them.

((starstate (λ (a) . . .))
(remberevens pure (car l)))

In the body of (λ (a) . . .) we make the next call.

((starstate (λ (a)
((starstate (λ (d) . . .))
(remberevens pure (cdr l)))))

(remberevens pure (car l)))

Finally, we have processed the recursive calls on both the car and the cdr , and we have only to (cons a d),
which is simple. Once again we wrap the simple expression using unit .5

((starstate (λ (a)
((starstate (λ (d) (unitstate (cons a d))))
(remberevens pure (cdr l)))))

(remberevens pure (car l)))

The first clause is simple: we simply pass ’() to unitstate, and we have our result.

(define remberevens
(λ (l)

(cond
((null? l) (unitstate ’()))
((list?? (car l))
((starstate (λ (a)

((starstate (λ (d) (unitstate (cons a d))))
(remberevens (cdr l)))))

(remberevens (car l))))
((odd? (car l))
((starstate (λ (d) (unitstate (cons (car l) d))))
(remberevens (cdr l))))

(else
(remberevens (cdr l))))))

5
The nested stars could be made to look simpler with bind , as mentioned in an earlier footnote.

(bind (remberevens (car l))
(λ (a)

(bind (remberevens (cdr l))
(λ (d) (unitstate (cons a d))))))

or with a macro do∗state, reminiscent of Haskell’s do and Scheme’s let∗.

(define-syntax do∗state
(syntax-rules ()

((() body) body)

((((a0 ma0) (a ma) . . .) body)

((starstate (λ (a0) (do∗state ((a ma) . . .) body)))
ma0))))

(do∗state ((a (remberevens (car l)))
(d (remberevens (cdr l))))

(unitstate (cons a d)))

5

Of course, all we’ve dealt with so far is remberevens, and what we really wanted was remberevensXcountevens.
It would seem that we’ve only done half of our job. However, the beauty of monadic style is that we are
almost done. Let’s change the name of the function to remberevensXcountevens almost and see just how far
off we are.

(define remberevensXcountevens almost

(λ (l)
(cond

((null? l) (unitstate ’()))
((list?? (car l))
((starstate (λ (a)

((starstate (λ (d) (unitstate (cons a d))))
(remberevensXcountevens almost (cdr l)))))

(remberevensXcountevens almost (car l))))
((odd? (car l))
((starstate (λ (d) (unitstate (cons (car l) d))))
(remberevensXcountevens almost (cdr l))))

(else
(remberevensXcountevens almost (cdr l))))))

First, what does (remberevensXcountevens almost l) return? It returns a function that takes a state
and returns a pair of values, the pure value that one might return from a call to (remberevens pure l)
and the extra value, which is the number of even numbers that have been removed. Here is a test of
remberevensXcountevens almost.

> ((remberevensXcountevens almost ’(2 3 (7 4 5 6) 8 (9) 2)) 0)
((3 (7 5) (9)) . 0)

What is 0 doing in the test? It is the initial value of the state s. What happens when the list of numbers
is empty? Then, we return (unitstate ’()), which is a function (λ (s) ‘(() . ,s)), by substituting () for a. Then
0 is substituted for s, which yields the pair (() . 0).

But, our answer is almost correct, since the only part that is wrong is the count. When should we be
counting? When we know we have an even number in (car l). So, let’s look at that else clause again.

(remberevensXcountevens almost (cdr l))

How can we revise this expression to fix the bug? This is a tail call, so we move the call into the body of a
sequel.

((starstate (λ ()
(remberevensXcountevens almost (cdr l))))

. . .)

and then manufacture a MA that can, through starstate, give the illusion of an effect. Since our MAs for
the state monad look like (λ (s) ‘(,a . ,ŝ)), that is what we must use, and since we don’t care what value
will get bound to , we might as well have the pure value be the symbol , leading to

((starstate (λ () (remberevensXcountevens almost (cdr l))))
(λ (s) ‘(. ŝ)))

All that is left is to decide what we want ŝ to be. Since the s coming into this MA is the current count, then
we can have ŝ become (add1 s), leading us to complete the else clause.6

((starstate (λ () (remberevensXcountevens almost (cdr l))))
(λ (s) ‘(. ,(add1 s))))

6
In principle, the state MA is any expression that evaluates to a function, such that when the function gets an argument the

body of the function evaluates to any pair. But, very little is lost thinking about the MA as a pattern instead of as something

computed, which is why we are using quasiquotation. The same principle applies to the Sequel .

6

The code is now correct, so we drop the almost subscript from the name.

(define remberevensXcountevens
(λ (l)

(cond
((null? l) (unitstate ’()))
((list?? (car l))
((starstate (λ (a)

((starstate (λ (d) (unitstate (cons a d))))
(remberevensXcountevens (cdr l)))))

(remberevensXcountevens (car l))))
((odd? (car l))
((starstate (λ (d) (unitstate (cons (car l) d))))
(remberevensXcountevens (cdr l))))

(else
((starstate (λ () (remberevensXcountevens (cdr l))))
(λ (s) ‘(. ,(add1 s))))))))

> ((remberevensXcountevens ’(2 3 (7 4 5 6) 8 (9) 2)) 0)
((3 (7 5) (9)) . 5)

Let’s think about the earlier definition in continuation-passing style. Both programs compute the cor-
rect answer, but they are doing so in very different ways. To show that this is the case, let’s trace the
execution of the add1 and + operators as we run each version of the program. Here’s what happens in
remberevensXcountevens cps:

> (remberevensXcountevens cps ’(2 3 (7 4 5 6) 8 (9) 2) (λ (p) p))
|(add1 0)
|1
|(add1 1)
|2
|(add1 0)
|1
|(+ 0 1)
|1
|(add1 1)
|2
|(+ 2 2)
|4
|(add1 4)
|5
((3 (7 5) (9)) . 5)

As we can see from the execution trace, remberevensXcountevens cps computes the number 5 by computing
sub-answers for the various sub-lists in the input, then combining the sub-answers with +.

7

By contrast, let’s look at a trace of the monadic version, remberevensXcountevens:

> ((remberevensXcountevens ’(2 3 (7 4 5 6) 8 (9) 2)) 0)
|(add1 0)
|1
|(add1 1)
|2
|(add1 2)
|3
|(add1 3)
|4
|(add1 4)
|5
((3 (7 5) (9)) . 5)

Now the results of calls to add1 are following a predictable pattern, and + is never used at all! Instead
of building up answers from sub-answers, as we see happening in the trace of remberevensXcountevens cps,
this version looks like we’re incrementing a counter.

In fact, the computation that takes place is rather like what would have happened if we had created a
global variable counter , initialized it to 0, and simply run (set! counter (add1 counter)) five times. But we
do it all without having to use set!. Instead, the state monad provides us with the illusion of a settable
global variable. This is an extremely powerful idea. We can now write programs that provide a faithful
simulation of effectful computation, but without actually performing any side effects—that is, we get the
usual benefits of effectful computation, without the usual drawbacks.

A final observation on the state monad is that the auxiliary function (λ (s) ‘(. ,(add1 s))), which
contains no free variables, could have been given a global name, say incrstate,

(define incrstate (λ (s) ‘(. ,(add1 s))))

but then the relationship between a sequel and its ma

(λ () . . .) ; ⇐= sequel
⇑

(λ (s) ‘(. ,(add1 s))) ; ⇐= ma

would not be as clear. The pure value, the symbol , in the car of the pair returned when a state is
passed to a ma is bound to the formal parameter, , of the sequel. Making this binding occur is one of the
jobs of starstate.7

Exercise: In remberevensXcountevens, the increment takes place before the tail recursive call, but we are free
to reorder these events. Implement this reordered-events variant by having the body of the sequel become
the second (curried) argument to starstate and make the appropriate adjustments to the sequel. Is this new
second (curried) argument to starstate a tail call?

Exercise: Define remberevensXmaxseqevens, which removes all the evens, but while it does that, it also
returns the length of the longest sequence of even numbers without an odd number. There are two obvious
ways to implement this function; try to implement them both. Hint: Consider the state holding more than
a single value.

7
We blithely use , but it is not an odd or even integer. In Scheme, however, we have no real need to distinguish these

types. We merely need to agree that we don’t care about the fact that we are binding a useless value to a useless variable.

Also, if we think about unitstate and starstate as methods of some class C , we could imagine another class that inherits C and

includes the incrstate method, but this is just packaging.

8

4 Deriving the State Monad

If we take the code for remberevensXcountevens and replace the definitions of unitstate and starstate by their
definitions, opportunities for either (let ((x e)) body) or equivalently ((λ (x) body) e) exist for substituting
e for x in body . If we know that x occurs in body just once, then these are correctness and efficiency (or
better) preserving transformations. These transformations (all thirty-six) are in the appendix, worked out
in detail, but, the result is the code in state-passing style, where a state is an argument passed in and out
of every recursive function call. The resulting code is what we might have written had we not known of the
state monad.

(define remberevensXcountevens sps

(λ (l s)
(cond

((null? l) ‘(() . ,s))
((list?? (car l))
(let ((p (remberevensXcountevens sps (car l) s)))

(let ((p̂ (remberevensXcountevens sps (cdr l) (cdr p))))
‘(,(cons (car p) (car p̂)) . ,(cdr p̂)))))

((odd? (car l))
(let ((p (remberevensXcountevens sps (cdr l) s)))

‘(,(cons (car l) (car p)) . ,(cdr p))))
(else
(let ((p (remberevensXcountevens sps (cdr l) s)))

‘(,(car p) . ,(add1 (cdr p))))))))

> (remberevensXcountevens sps ’(2 3 (7 4 5 6) 8 (9) 2) 0)
((3 (7 5) (9)) . 5)

We can also start from remberevensXcountevens sps and derive unitstate and starstate, since each correctness-
preserving transformation is invertible.

This ends the first monad lecture. In the second lecture, I will present various other monads and how
one might use them.

9

Lecture 2: Other monads

In the second lecture we introduce several more monads. In order to define a monad, we must define two
functions that work well together, that is, the monad must be certified.

5 The Maybe Monad

Here is the maybe monad.

(define unitmaybe

(λ (a)
‘(,a .))) ; ⇐= This MA gets its type from the type of a.

(define starmaybe

(λ (sequel)
(λ (ma)

(cond ; ⇐= This is a MB.
((eq? (cdr ma) ’)
(let ((a (car ma)))

(sequel a)))
(else (let ((mb ma))

mb))))))

The tag in the cdr indicates that the pure value is in the car just as in the state monad. We immediately
see that there are what appear to be extraneous aspects to this monad. If you recall, in the state monad
everything was self contained; here however, things are not so clean, but since we are only concerned with
unitmaybe in the first two certification equations, and since there is an symbol that is used in unitmaybe

and a dispatch for the symbol in starmaybe, it is at least possible that the first two certification equations
hold.

If you have ever used Scheme’s assq , then you know what an ill-structured mess it is to always have to
check for failure. The maybe monad allows the programmer to think at a higher level when handling of
failure is not relevant. Consider new-assq , which is like assq . Its job is to return a MA (a pair) whose car
is the cdr of the first pair in p∗ whose car matches v .

(define new-assq
(λ (v p∗)

(cond
((null? p∗) ’(. fail)) ; ⇐= (. fail) is a MA
((eq? (caar p∗) v) (unitmaybe (cdar p∗)))
(else ((starmaybe (λ (a) (unitmaybe a)))

(new-assq v (cdr p∗)))))))

Since (new-assq v (cdr p∗)) is a tail call, we can rewrite new-assq relying on η reduction and the first monad
certification equation, leading to

(define new-assq
(λ (v p∗)

(cond
((null? p∗) ’(. fail))
((eq? (caar p∗) v) (unitmaybe (cdar p∗)))
(else (new-assq v (cdr p∗))))))

All right-hand sides of each cond-clause must be MAs, of course, and they are since the only way to terminate
is in the first two cond-clauses, and each is a MA. (Because (. fail)’s cdr is the symbol fail, it cannot be
confused with .) To see how we might use new-assq , we run the following test.

10

> ((starmaybe (λ (a) (new-assq a ’((1 . 10) (2 . 20)))))
((λ (ma1 ma2)

(cond
((eq? (cdr ma1) ’) ma1)
(else ma2)))

(new-assq 8 ’((7 . 1) (9 . 3)))
(new-assq 8 ’((9 . 4) (6 . 5) (8 . 2) (7 . 3)))))

We have to verify that the second (curried) argument to starmaybe is a MA. In either clause of the cond
expression above, the result is a MA. Here we are looking up 8 in two different association lists. We are
then taking the pure value 2 and looking it up in a third association list. This returns the pair (20 .).
In the cond-clause when we fail, we try the other MA, but in the case where we succeed, we use the one
that succeeded. The pure variable a will get bound to the pure value 2. The downside of this definition is
that the first two calls to new-assq will get evaluated, but that is only because we are not in a language
like Haskell where the arguments are passed by need. If we wanted to get the benefits of Haskell, we would
redefine the second MA to be a thunk.

> ((starmaybe (λ (a) (new-assq a ’((1 . 10) (2 . 20)))))
((λ (Ma1 Ma2)

(cond
((eq? (cdr Ma1) ’) Ma1)
(else (Ma2))))

(new-assq 8 ’((7 . 1) (9 . 3)))
(λ () (new-assq 8 ’((9 . 4) (6 . 5) (8 . 2) (7 . 3))))))

(20 .)

and still be convinced that the (curried) second argument would evaluate to a MA. Structurally, we could
have chosen #f instead of (. fail) and appropriately revised the cond-clauses, however, because we show
the exception monad next, we wanted to stay with the representations.

Exercise: Revise the Maybe Monad where it is assumed that every MA is a thunk.

6 The Exception Monad

Here is the exception monad, where again the pure value is in the car , but this time an exception, a string,
is in the cdr , though any value other than the symbol would suffice.

(define unitexception

(λ (a)
‘(,a .))) ; ⇐= This MA gets its type from the type of a.

(define starexception

(λ (sequel)
(λ (ma)

(cond ; ⇐= This is a MB.
((eq? (cdr ma) ’)
(let ((a (car ma)))

(sequel a)))
(else (let ((mb ma))

mb)))

11

The definitions of unitexception (starexception) and unitmaybe (respectively starmaybe) are identical. Our
example is from Jeff Newbern’s (http://www.haskell.org/all about monads/html/errormonad.html)
“All About Monads A comprehensive guide to the theory and practice of monadic programming in Haskell
Version 1.1.0”.

To quote Newbern, “The example attempts to parse hexadecimal numbers and throws an exception
if an invalid character is encountered.” The construction of an exception MA in the else branch of
char-hex→integer below indicates the throwing of an exception. The sequel does not get invoked and con-
sequently the pure variable a does not get bound if the MA produced by char-hex→integer is an exception
MA. Instead the exception MA is returned as the answer.

(define parse-hex-c∗
(λ (c∗ pos n)

(cond
((null? c∗) (unitexception n))
(else ((starexception (λ (a)

(parse-hex-c∗ (cdr c∗) (+ pos 1) (+ (∗ n 16) a))))
(char-hex→integer (car c∗) pos))))))

(define char-hex?
(λ (c)

(or (char-numeric? c) (char≤? #\a c #\f))))

(define char-hex→integer/safe
(λ (c)

(− (char→integer c) (if (char-numeric? c) (char→integer #\0) (− (char→integer #\a) 10)))))

(define char-hex→integer
(λ (c pos)

(cond
((char-hex? c) (unitexception (char-hex→integer/safe c)))
(else ‘(. ,(format "At index ˜s : bad char ˜c" pos c))))))

Of course, the beauty of parse-hex-c∗ is that if you think purely, there is nothing in the definition of
parse-hex-c∗ to indicate that anything might lead to an exception.

> (parse-hex-c∗ (string→list "ab") 0 0)
(171 .)

> (parse-hex-c∗ (string→list "a5bex21b") 0 0)
(. "At index 4 : bad char x")

Normally, the two 0’s passed to parse-hex-c∗ should be hidden from the parse-hex-c∗ interface, and that
would be easy with a recursively defined local function within parse-hex-c∗ that initializes the two variables.
Furthermore, it might have been wiser to introduce catch with handlers and throw to hide representation,
etc. But the reality is, each of these things improves various aspects of the definition, but it also would make
it more difficult to understand the essence of the exception monad, which is the goal of this section.

Exercise: add the functions for catch and throw .

Exercise: Another approach would be to define a global function runexception that that would act as the user
interface and its job would be to invoke parse-hex-c∗ and then return a single value, instead of a dotted pair
with a useless .

The next monad is the writer monad.

12

7 The Writer Monad

Here is the writer monad.

(define unitwriter

(λ (a)
‘(,a . ,mzero list))) ; ⇐= This pair is a MA.

(define starwriter

(λ (sequel)
(λ (ma)

(let ((a (car ma))) ; ⇐= This is a MB.
(let ((mb (sequel a)))

(let ((new-b (car mb)))
‘(,new-b . ,(mplus list (cdr ma) (cdr mb)))))))))

We need the auxiliaries mzero list and mplus list.

(define mzero list ’())

(define mplus list append)

We define remberevensXevens, which takes the same argument as remberevensXcountevens and returns
a pair that differs only in the cdr : instead of returning a count, it returns a list of the even numbers in the
order that the even numbers were removed.

(define remberevensXevens
(λ (l)

(cond
((null? l) (unitwriter ’()))
((list?? (car l))
((starwriter (λ (a)

((starwriter (λ (d) (unitwriter (cons a d))))
(remberevensXevens (cdr l)))))

(remberevensXevens (car l))))
((odd? (car l))
((starwriter (λ (d) (unitwriter (cons (car l) d))))
(remberevensXevens (cdr l))))

(else
((starwriter (λ () (remberevensXevens (cdr l))))
‘(. (,(car l))))))))

> (remberevensXevens ’(2 3 (8 (5 6 7) 4 8 7) 8 2 9))
((3 ((5 7) 7) 9) . (2 8 6 4 8 8 2))

This is structurally similar to the exception monad, except we are building up our results using a monoid
(a pair of an abstract addition operator and an abstract zero value that acts addition-like. Among such
monoid pairs are (+, 0), (∗, 1) (append , ()), (and, #t), and (or, #f). In fact, any values we associate with
mplus and mzero must have these properties. The pair we implemented uses (append , ()).
Exercise: Produce an answer with the cdr reversed, but use the same test program and same definition of
remberevensXevens. Hint: Solve it by redefining one global variable.

> (remberevensXevens ’(2 3 (8 (5 6 7) 4 8 7) 8 2 9))
((3 ((5 7) 7) 9) . (2 8 8 4 6 8 2))

The next monad is the list monad.

13

8 The List Monad

Here is the list monad.

(define unitlist

(λ (a)
‘(,a . ()))) ; ⇐= This pair is a MA.

(define starlist

(λ (sequel)
(λ (ma)

(cond ; ⇐= This is a MB
((eq? (car ma) ’) ’(.))
(else
(let ((mb (sequel (car ma))))

(let ((extra (append (cdr mb) (mapcan sequel (cdr ma)))))
‘(,(car mb) . ,extra))))))))

(define mapcan
(λ (f ls)

(cond
((null? ls) ’())
(else (append (f (car ls)) (mapcan f (cdr ls)))))))

We know that a MA is a list of pures, so each (sequel a) returns a MB, thus the result of mapcan will
be a list of pures.

Consider this example (http://www.haskell.org/all about monads/html/listmonad.html) from Jeff
Newburn’s tutorial. “The canonical example of using the List monad is for parsing ambiguous grammars.
The example below shows just a small example of parsing data into hex values, decimal values, and words
containing only alphanumeric characters. Note that hexadecimal digits overlap both decimal digits and
alphanumeric characters, leading to an ambiguous grammar. "dead" is both a valid hex value and a word,
for example, and "10" is both a decimal value of 10 and a hex value of 16.” ("10" is also an alphanumeric
word.)

In the definition of parse-c∗ below, we first create the three specialized parsers that take a pure tagged
value and a new character. Then, we define the function that takes a pure tagged value and a list of
characters. The same character is passed to these three defined parsers along with a pure tagged value.
Each returns a MA, which are then formed into a list by appending the MAs together using mplus list.

(define parse-c∗
(λ (a c∗)

(cond
((null? c∗) (unitlist a))
(else ((starlist (λ (a) (parse-c∗ a (cdr c∗))))

(mplus list

(parse-hex-digit a (car c∗))
(parse-dec-digit a (car c∗))
(parse-alphanumeric a (car c∗))))))))

14

(define parse-hex-digit
(λ (a c)

(cond
((and (eq? (car a) ’hex-number) (char-hex? c))
(unitlist ‘(hex-number . ,(+ (∗ (cdr a) 16) (char-hex→integer/safe c)))))

(else mzero list))))

(define parse-dec-digit
(λ (a c)

(cond
((and (eq? (car a) ’decimal-number) (char-numeric? c))
(unitlist ‘(decimal-number . ,(+ (∗ (cdr a) 10) (− (char→integer c) 48)))))

(else mzero list))))

(define parse-alphanumeric
(λ (a c)

(cond
((and (eq? (car a) ’word-string) (or (char-alphabetic? c) (char-numeric? c)))
(unitlist ‘(word-string . ,(string-append (cdr a) (string c)))))

(else mzero list))))

Below we produce a legal hex and alphanumeric string. Again, the hex string has been converted to the
decimal number, 171.

> ((starlist (λ (a) (parse-c∗ a (string→list "ab"))))
(mplus list

(unitlist ’(hex-number . 0))
(unitlist ’(decimal-number . 0))
(unitlist ’(word-string . ""))))

((hex-number . 171) (word-string . "ab"))

Next, we get a legal hex number, decimal number, and alphanumeric string.

> ((starlist (λ (a) (parse-c∗ a (string→list "123"))))
(mplus list

(unitlist ’(hex-number . 0))
(unitlist ’(decimal-number . 0))
(unitlist ’(word-string . ""))))

((hex-number . 291) (decimal-number . 123) (word-string . "123"))

Of course, if we discover a special character, we fail by returning the empty list of answers.

> ((starlist (λ (a) (parse-c∗ a (string→list "abc@x"))))
(mplus list

(unitlist ’(hex-number . 0))
(unitlist ’(decimal-number . 0))
(unitlist ’(word-string . ""))))

()

This ends the discussion of the list monad. The next monad is the environment monad.

15

9 The Environment Monad

Here is the environment monad.

(define unit environment
(λ (a)

(λ (env)
(let ((ma a))

ma))))

(define star environment
(λ (sequel)

(λ (ma)
(λ (env)

(let ((a (ma env)))
(let ((mb (sequel a)))

(mb env)))))))

(define multDepth
(λ (ls)

(cond
((null? ls) (unit environment ’()))
((list?? ls)
((star environment

(λ (a)
((star environment

(λ (d)
(unit environment (cons a d))))

(multDepth (cdr ls)))))
(extend-context (multDepth (car ls)))))

(else ((star environment
(λ (a)

((star environment
(λ (d)

(unit environment (∗ a d))))
(get-context))))

(unit environment ls))))))

This paragraph is out of date.
The reader monad is in effect the state monad, but when we use it, we only initialize the state, so if

we think about our almost attempt that failed to increment the state, that would be an example of the
reader monad. But, if the initial value had been say an association list of interesting global information,
then every time we need that global information it would be accessible. The single settable variable illusion
has disappeared and has been replaced by the illusion of a global variable whose value can be accessed. For
example, we might have the following expression.

((starreader (λ (assoc-list)
(let ((animal (cdr (assq ’animal assoc-list))))

(if (or (eq? animal ’cat) (eq? animal ’dog))
(unitreader ’domestic)
(unitreader ’wild)))))

(λ (s) (let ((a s)) ‘(,a . ,s))))

16

By making the association list s be treated as a pure value, a, in the MA, (λ (s) (let ((a s)) ‘(,a . ,s))),
we can access that association list within the body of the sequel. How mutations to the state are denied
is a matter of either self-discipline or externally-imposed discipline. Of course, the big advantage is that as
far as the programmer is concerned, they never have to know anything about the association list unless it is
needed, and most importantly, it is not passed around as an extra argument to all function calls, when in
fact, it is only occasionally needed.

This ends our discussion of the reader monad. Next, we define programs that use an operator like
Scheme’s call/cc. It is nearly the same as Scheme’s, but not quite, as we will soon discover.

17

10 The Continuation Monad

Here is the continuation monad.

(define unitcontinuation

(λ (a)
(λ (k) ; ⇐= This function is a MA.

(k a))))

(define starcontinuation

(λ (sequel)
(λ (ma)

(λ (k) ; ⇐= This function is a MB
(let ((k̂ (λ (a)

(let ((mb (sequel a)))
(mb k)))))

(ma k̂))))))

If we monadify the definition of remberevensXcountevens cps using the continuation monad, then the
definition of remberevensXcountevens becomes a single argument procedure.

(define remberevensXcountevens
(λ (l)

(cond
((null? l) (unitcontinuation ‘(() . 0)))
((list?? (car l))
((starcontinuation (λ (pa)

((starcontinuation

(λ (pd)
(unitcontinuation ‘(,(cons (car pa) (car pd)) . ,(+ (cdr pa) (cdr pd))))))

(remberevensXcountevens (cdr l)))))
(remberevensXcountevens (car l))))

((odd? (car l))
((starcontinuation (λ (p)

(unitcontinuation ‘(,(cons (car l) (car p)) . ,(cdr p)))))
(remberevensXcountevens (cdr l))))

(else ((starcontinuation (λ (p)
(unitcontinuation ‘(,(car p) . ,(add1 (cdr p))))))

(remberevensXcountevens (cdr l)))))))

> ((remberevensXcountevens ’(2 3 (7 4 5 6) 8 (9) 2)) (λ (p) p))
((3 (7 5) (9)) . 5)

This should be enough evidence that our code is in continuation-passing style without an explicit contin-
uation being passed around. We could use a similar derivation that shows how to regain the earlier explicit
CPS’d definition, just as we generated store-passing style in the first lecture. We leave that as a tedious
exercise for the reader.

We would be done with the discussion of the continuation monad except that one of the great things
about this monad is that the continuation monad allows us to write programs that use something very
similar to call/cc, which we call callcc. Here is its definition.

18

(define callcc
(λ (f)

(λ (k)
(let ((k-as-proc (λ (a) (λ (k ignored) (k a)))))

(let ((ma (f k-as-proc)))
(ma k))))))

In the definition of callcc we package the current continuation k to ignore the future current continuation
and invoke the current stored one. That is what gets bound to k-as-proc. We pass that packaged continuation
to f , which returns a MA, which is then passed the current k that we entered with. We demonstrate this
with a program that takes the same kind of argument as remberevens and if a zero is found, the result is 0,
otherwise it forms the product of all the numbers in this list. For the fun of it, we added some code to process
after we exited to make sure that it did not happen. Had we not cared about the (sub1 (exit 0)), which
is the same as (exit 0), we might not have been convinced that we indeed have considered every facet of
call/cc. This works because the task of monadifying (sub1 (exit 0)) is to recognize that (exit 0) is a nontail
call and so the call to sub1 must be in the sequel, where it will be ignored.

(define product
(λ (ls exit)

(cond
((null? ls) (unitcontinuation 1))
((list?? (car ls))
((starcontinuation (λ (a)

((starcontinuation (λ (d) (unitcontinuation (∗ a d))))
(product (cdr ls) exit))))

(product (car ls) exit)))
((zero? (car ls)) ((starcontinuation (λ () (unitcontinuation (sub1))))

(exit 0)))
(else ((starcontinuation (λ (d) (unitcontinuation (∗ (car ls) d))))

(product (cdr ls) exit))))))

The first test below handles the base case where 1 is returned without invoking out .

> ((callcc (λ (out) (product ’() out)))
(λ (x) x))

1

The next example corresponds to Scheme’s (add1 (call/cc (λ (out) (product ’() out)))). We add one to
the answer because, when the value is returned by the default continuation, add1 is waiting.

> (((starcontinuation (λ (a) (unitcontinuation (add1 a))))
(callcc (λ (out) (product ’() out))))

(λ (x) x))
2

The third example shows how the Scheme expression (add1 (call/cc (λ (out) (product ’(5 0 5) out))))
would be translated monadically. Since add1 is in the continuation, out , we end up adding one to zero.

> (((starcontinuation (λ (a) (unitcontinuation (add1 a))))
(callcc

(λ (out)
(product ’(5 0 5) out))))

(λ (x) x))
1

Here, since there is no 0 in the list, we get the product of the numbers in the list being returned by
invoking the default continuation.

19

> ((callcc
(λ (out)

(product ’(2 3 (7 4 5 6) 8 (9) 2) out)))
(λ (x) x))

725760

This last example behaves the same as this simple Scheme example.

(call/cc
(λ (k0)

((car (call/cc (λ (k1)
(k0 (− (call/cc (λ (k2) (k1 ‘(,k2)))) 1)))))

3)))

But, monadifying it is a bit tricky. The ((car �) 3) that is in the continuation of k1 has to move to the
first sequel, and similarly, the (k0 (− � 1)) has to move to the second sequel.

> ((callcc
(λ (k0)

((starcontinuation (λ (a) ((car a) 3)))
(callcc

(λ (k1)
((starcontinuation (λ (n) (k0 (− n 1))))
(callcc (λ (k2) (k1 ‘(,k2))))))))))

(λ (x) x))
2

The next monad is the identity monad.

11 The Identity Monad

Here is the identity monad.

(define unitidentity

(λ (a)
(let ((ma a))

ma)))

(define staridentity

(λ (sequel)
(λ (ma)

(let ((a ma)) ; ⇐= This is a MB.
(sequel a)))))

Consider remberevens from the first lecture. We take that definition and replace each use of unitstate by
unitidentity and starstate by staridentity. Then we get the following definition.

20

(define remberevens
(λ (l)

(cond
((null? l) (unitidentity ’()))
((list?? (car l))
((staridentity (λ (a)

((staridentity (λ (d) (unitidentity (cons a d))))
(remberevens (cdr l)))))

(remberevens (car l))))
((odd? (car l))
((staridentity (λ (d) (unitidentity (cons (car l) d))))
(remberevens (cdr l))))

(else (remberevens (cdr l))))))

> (remberevens ’(2 3 (7 4 5 6) 8 (9) 2))
(3 (7 5) (9))

This is a pure solution because we have a very clean unit and star : both are obviously the identity
function. It is trivial to revise the identity monad to use a pair whose car has the pure value.

12 Appendix : State-Passing Style Derivation

We want to actually maintain the illusion of a state in non-monadic functional Scheme. To do this, we will
need to pass the state in and out of every recursive (nonsimple) call. We will derive the definition that would
have been produced in the absence of unitstate and starstate. We start our complete thirty-six step solution.

(define remberevensXcountevens
(λ (l)

(cond
((null? l) (unitstate ’()))
((list?? (car l))
((starstate (λ (a)

((starstate (λ (d) (unitstate (cons a d))))
(remberevensXcountevens (cdr l)))))

(remberevensXcountevens (car l))))
((odd? (car l))
((starstate (λ (d) (unitstate (cons (car l) d))))
(remberevensXcountevens (cdr l))))

(else
((starstate (λ () (remberevensXcountevens (cdr l))))
(λ (s) ‘(. ,(add1 s))))))))

Before we dive into a lengthy derivation, it is necessary to make two observations.

1. ((λ (x) body) e) is equivalent to (let ((x e)) body).

2. In (let ((x e)) body) it is legitimate to substitute e for x in body provided that no unwanted variable
capture occurs, and of course, this works in both directions.

For example, ((f x) ((g x) (g x))) can be rewritten as (let ((gx (g x))) ((f x) (gx gx))) and vice versa.
These are the primary transformations we use in the derivation below. Furthermore, we have structured

the derivation where no unwanted variable capture can occur. It is always easy to avoid such variable capture
by carefully renaming some variables.

21

The definition below is fully expanded: there are neither stars nor units. The notation we use is that we
are replacing an arbitrary variable x by some expression e, which we write as [e/x]. Our first two steps are
[.../unitstate] and [.../starstate]. We use “. . . ” when an expression is large and when there is no ambiguity
as to what should be substituted for the variable.

All of the uses of [e/x] in this derivation are unambiguous, by design—shadowing of lexical variables will
not be a concern. Each step can be tested and will produce the correct answer. This property insures that
a typographical error does not persist through these transformations, only to be discovered when the end
result fails.

1/2. [.../unitstate] and [.../starstate].

(define remberevensXcountevens
(λ (l)

(cond
((null? l) ((λ (a) (λ (s) ‘(,a . ,s))) ’()))
((list?? (car l))
(((λ (sequel)

(λ (ma)
(λ (s)

(let ((p (ma s)))
(let ((new-a (car p)) (new-s (cdr p)))

(let ((mb (sequel new-a)))
(mb new-s)))))))

(λ (a)
(((λ (sequel)

(λ (ma)
(λ (s)

(let ((p (ma s)))
(let ((new-a (car p)) (new-s (cdr p)))

(let ((mb (sequel new-a)))
(mb new-s)))))))

(λ (d) ((λ (a) (λ (s) ‘(,a . ,s))) (cons a d))))
(remberevensXcountevens (cdr l)))))

(remberevensXcountevens (car l))))
((odd? (car l))
(((λ (sequel)

(λ (ma)
(λ (s)

(let ((p (ma s)))
(let ((new-a (car p)) (new-s (cdr p)))

(let ((mb (sequel new-a)))
(mb new-s)))))))

(λ (d) ((λ (a) (λ (s) ‘(,a . ,s))) (cons (car l) d))))
(remberevensXcountevens (cdr l))))

(else
(((λ (sequel)

(λ (ma)
(λ (s)

(let ((p (ma s)))
(let ((new-a (car p)) (new-s (cdr p)))

(let ((mb (sequel new-a)))
(mb new-s)))))))

(λ (a) (λ (s) ‘(,a . ,(add1 s)))))
(remberevensXcountevens (cdr l)))))))

22

We start on the fourth clause.

3. [(λ (a) (λ (s) ‘(,a . ,(add1 s))))/sequel].

(else
((λ (ma)

(λ (s)
(let ((p (ma s)))

(let ((new-a (car p)) (new-s (cdr p)))
(let ((mb ((λ (a) (λ (s) ‘(,a . ,(add1 s))))

new-a)))
(mb new-s))))))

(remberevensXcountevens (cdr l))))

4. [(remberevensXcountevens (cdr l))/ma].

(else
(λ (s)

(let ((p ((remberevensXcountevens (cdr l)) s)))
(let ((new-a (car p)) (new-s (cdr p)))

(let ((mb ((λ (a) (λ (s) ‘(,a . ,(add1 s))))
new-a)))

(mb new-s))))))

5. [.../a].

(else
(λ (s)

(let ((p ((remberevensXcountevens (cdr l)) s)))
(let ((new-a (car p)) (new-s (cdr p)))

(let ((mb (λ (s) ‘(,new-a . ,(add1 s)))))
(mb new-s))))))

6/7. [(car p)/new-a] and [(cdr p)/new-s].

(else
(λ (s)

(let ((p ((remberevensXcountevens (cdr l)) s)))
(let ((mb (λ (s) ‘(,(car p) . ,(add1 s)))))

(mb (cdr p))))))

8. [(λ (s) ‘(,(car p) . ,(add1 s)))/mb].

(else
(λ (s)

(let ((p ((remberevensXcountevens (cdr l)) s)))
((λ (s) ‘(,(car p) . ,(add1 s))) (cdr p)))))

Now, we finish the clause.

9. [(cdr p)/s].

(else
(λ (s)

(let ((p ((remberevensXcountevens (cdr l)) s)))
‘(,(car p) . ,(add1 (cdr p))))))

23

For the third clause, we can do approximately the same set of reductions as in the fourth clause, except
there will be a slight difference, because of the way the pair will get constructed, but it should be obvious.
First we fill in a value for sequel as before.

10. [(λ (d) ((λ (a) (λ (s) ‘(,a . ,s))) (cons a d)))/sequel].

((odd? (car l))
((λ (ma)

(λ (s)
(let ((p (ma s)))

(let ((new-a (car p)) (new-s (cdr p)))
(let ((mb ((λ (d)

((λ (a)
(λ (s)

‘(,a . ,s)))
(cons (car l) d)))

new-a)))
(mb new-s))))))

(remberevensXcountevens (cdr l))))

11. [(remberevensXcountevens (cdr l))/ma].

((odd? (car l))
(λ (s)

(let ((p ((remberevensXcountevens (cdr l)) s)))
(let ((new-a (car p)) (new-s (cdr p)))

(let ((mb ((λ (d)
((λ (a)

(λ (s)
‘(,a . ,s))) (cons (car l) d))) new-a)))

(mb new-s))))))

12/13. [(car p)/new-a] and [(cdr p)/new-d].

((odd? (car l))
(λ (s)

(let ((p ((remberevensXcountevens (cdr l)) s)))
(let ((mb ((λ (d)

((λ (a)
(λ (s) ‘(,a . ,s)))

(cons (car l) d)))
(car p))))

(mb (cdr p))))))

14. [(car p)/d].

((odd? (car l))
(λ (s)

(let ((p ((remberevensXcountevens (cdr l)) s)))
(let ((mb ((λ (a)

(λ (s) ‘(,a . ,s)))
(cons (car l) (car p)))))

(mb (cdr p))))))

24

15. [((cons (car l) (car p))/a)].

((odd? (car l))
(λ (s)

(let ((p ((remberevensXcountevens (cdr l)) s)))
(let ((mb (λ (s) ‘(,(cons (car l) (car p)) . ,s))))

(mb (cdr p))))))

16. [(λ (s) ‘(,(cons (car l) (car p)) . ,s))/mb].

((odd? (car l))
(λ (s)

(let ((p ((remberevensXcountevens (cdr l)) s)))
((λ (s) ‘(,(cons (car l) (car p)) . ,s)) (cdr p)))))

With this final step, we are done with the third clause.

17. [(cdr p)/s].

((odd? (car l))
(λ (s)

(let ((p ((remberevensXcountevens (cdr l)) s)))
‘(,(cons (car l) (car p)) . ,(cdr p)))))

To work through the second clause and maintain one’s sanity, it is a good idea to rename some of the
variables. We will add a hat on the variables in the inner code.

18. Rename variables.

((list?? (car l))
(((λ (sequel)

(λ (ma)
(λ (s)

(let ((p (ma s)))
(let ((new-a (car p)) (new-s (cdr p)))

(let ((mb (sequel new-a)))
(mb new-s)))))))

(λ (â)
(((λ (sequel̂)

(λ (mâ)
(λ (ŝ)

(let ((p̂ (mâ ŝ)))
(let ((new-â (car p̂)) (new-ŝ (cdr p̂)))

(let ((mb̂ (sequel̂ new-â)))
(mb̂ new-ŝ)))))))

(λ (d)
((λ (a) (λ (s) ‘(,a . ,s)))
(cons â d))))

(remberevensXcountevens (cdr l)))))
(remberevensXcountevens (car l))))

25

And so we begin.

19. [.../sequel].

((list?? (car l))
((λ (ma)

(λ (s)
(let ((p (ma s)))

(let ((new-a (car p)) (new-s (cdr p)))
(let ((mb ((λ (â)

(((λ (sequel̂)
(λ (mâ)

(λ (ŝ)
(let ((p̂ (mâ ŝ)))

(let ((new-â (car p̂))
(new-ŝ (cdr p̂)))

(let ((mb̂ (sequel̂ new-â)))
(mb̂ new-ŝ)))))))

(λ (d)
((λ (a)

(λ (s) ‘(,a . ,s)))
(cons â d))))

(remberevensXcountevens (cdr l))))
new-a)))

(mb new-s))))))
(remberevensXcountevens (car l))))

20. [.../ma].

((list?? (car l))
(λ (s)

(let ((p ((remberevensXcountevens (car l)) s)))
(let ((new-a (car p)) (new-s (cdr p)))

(let ((mb ((λ (â)
(((λ (sequel̂)

(λ (mâ)
(λ (ŝ)

(let ((p̂ (mâ ŝ)))
(let ((new-â (car p̂))

(new-ŝ (cdr p̂)))
(let ((mb̂ (sequel̂ new-â)))

(mb̂ new-ŝ)))))))
(λ (d)

((λ (a)
(λ (s) ‘(,a . ,s)))

(cons â d))))
(remberevensXcountevens (cdr l))))

new-a)))
(mb new-s))))))

26

21/22. [.../new-a] and [.../new-s].

((list?? (car l))
(λ (s)

(let ((p ((remberevensXcountevens (car l)) s)))
(let ((mb ((λ (â)

(((λ (sequel̂)
(λ (mâ)

(λ (ŝ)
(let ((p̂ (mâ ŝ)))

(let ((new-â (car p̂))
(new-ŝ (cdr p̂)))

(let ((mb̂ (sequel̂ new-â)))
(mb̂ new-ŝ)))))))

(λ (d)
((λ (a)

(λ (s) ‘(,a . ,s)))
(cons â d))))

(remberevensXcountevens (cdr l))))
(car p))))

(mb (cdr p))))))

23. [.../mb].

((list?? (car l))
(λ (s)

(let ((p ((remberevensXcountevens (car l)) s)))
(((λ (â)

(((λ (sequel̂)
(λ (mâ)

(λ (ŝ)
(let ((p̂ (mâ ŝ)))

(let ((new-â (car p̂))
(new-ŝ (cdr p̂)))

(let ((mb̂ (sequel̂ new-â)))
(mb̂ new-ŝ)))))))

(λ (d)
((λ (a) (λ (s) ‘(,a . ,s)))
(cons â d))))

(remberevensXcountevens (cdr l))))
(car p))

(cdr p)))))

27

24. [(car p)/â].

((list?? (car l))
(λ (s)

(let ((p ((remberevensXcountevens (car l)) s)))
((((λ (sequel̂)

(λ (mâ)
(λ (ŝ)

(let ((p̂ (mâ ŝ)))
(let ((new-â (car p̂))

(new-ŝ (cdr p̂)))
(let ((mb̂ (sequel̂ new-â)))

(mb̂ new-ŝ)))))))
(λ (d)

((λ (a) (λ (s) ‘(,a . ,s)))
(cons (car p) d))))

(remberevensXcountevens (cdr l)))
(cdr p)))))

25. [.../sequel̂].

((list?? (car l))
(λ (s)

(let ((p ((remberevensXcountevens (car l)) s)))
(((λ (mâ)

(λ (ŝ)
(let ((p̂ (mâ ŝ)))

(let ((new-â (car p̂))
(new-ŝ (cdr p̂)))

(let ((mb̂ ((λ (d)
((λ (a) (λ (s) ‘(,a . ,s)))
(cons (car p) d)))

new-â)))
(mb̂ new-ŝ))))))

(remberevensXcountevens (cdr l)))
(cdr p)))))

26. [(remberevensXcountevens (cdr l))/mâ].

((list?? (car l))
(λ (s)

(let ((p ((remberevensXcountevens (car l)) s)))
((λ (ŝ)

(let ((p̂ ((remberevensXcountevens (cdr l)) ŝ)))
(let ((new-â (car p̂))

(new-ŝ (cdr p̂)))
(let ((mb̂ ((λ (d)

((λ (a) (λ (s) ‘(,a . ,s)))
(cons (car p) d)))

new-â)))
(mb̂ new-ŝ)))))

(cdr p)))))

28

27. [(cdr p)/ŝ].

((list?? (car l))
(λ (s)

(let ((p ((remberevensXcountevens (car l)) s)))
(let ((p̂ ((remberevensXcountevens (cdr l)) (cdr p))))

(let ((new-â (car p̂))
(new-ŝ (cdr p̂)))

(let ((mb̂ ((λ (d)
((λ (a) (λ (s) ‘(,a . ,s)))
(cons (car p) d)))

new-â)))
(mb̂ new-ŝ)))))))

28/29. [(car p̂)/new-â], and [(cdr p̂)/new-ŝ].

((list?? (car l))
(λ (s)

(let ((p ((remberevensXcountevens (car l)) s)))
(let ((p̂ ((remberevensXcountevens (cdr l)) (cdr p))))

(let ((mb̂ ((λ (d)
((λ (a) (λ (s) ‘(,a . ,s)))
(cons (car p) d)))

(car p̂))))
(mb̂ (cdr p̂)))))))

30. [.../mb̂].

((list?? (car l))
(λ (s)

(let ((p ((remberevensXcountevens (car l)) s)))
(let ((p̂ ((remberevensXcountevens (cdr l)) (cdr p))))

(((λ (d)
((λ (a)

(λ (s) ‘(,a . ,s)))
(cons (car p) d)))

(car p̂))
(cdr p̂))))))

31. [(car p̂)/d].

((list?? (car l))
(λ (s)

(let ((p ((remberevensXcountevens (car l)) s)))
(let ((p̂ ((remberevensXcountevens (cdr l)) (cdr p))))

(((λ (a) (λ (s) ‘(,a . ,s)))
(cons (car p) (car p̂)))

(cdr p̂))))))

29

32. [(cons (car p) (car p̂))/a].

((list?? (car l))
(λ (s)

(let ((p ((remberevensXcountevens (car l)) s)))
(let ((p̂ ((remberevensXcountevens (cdr l)) (cdr p))))

((λ (s) ‘(,(cons (car p) (car p̂)) . ,s))
(cdr p̂))))))

The next step finishes the second clause.

33. [(cdr p̂)/s].

((list?? (car l))
(λ (s)

(let ((p ((remberevensXcountevens (car l)) s)))
(let ((p̂ ((remberevensXcountevens (cdr l)) (cdr p))))

‘(,(cons (car p) (car p̂)) . ,(cdr p̂))))))

Now, we come to the first clause, and we revisit what we have thus far derived.

34. [’()/a].

(define remberevensXcountevens
(λ (l)

(cond
((null? l)
(λ (s)

‘(() . ,s)))
((list?? (car l))
(λ (s)

(let ((p ((remberevensXcountevens (car l)) s)))
(let ((p̂ ((remberevensXcountevens (cdr l)) (cdr p))))

‘(,(cons (car p) (car p̂)) . ,(cdr p̂))))))
((odd? (car l))
(λ (s)

(let ((p ((remberevensXcountevens (cdr l)) s)))
‘(,(cons (car l) (car p)) . ,(cdr p)))))

(else
(λ (s)

(let ((p ((remberevensXcountevens (cdr l)) s)))
‘(,(car p) . ,(add1 (cdr p)))))))))

30

Next we can do an inverted staging of each of the clause’s outer (λ (s) . . .).

35. Inverted staging.

(define remberevensXcountevens
(λ (l)

(λ (s)
(cond

((null? l) ‘(() . ,s))
((list?? (car l))
(let ((p ((remberevensXcountevens (car l)) s)))

(let ((p̂ ((remberevensXcountevens (cdr l)) (cdr p))))
‘(,(cons (car p) (car p̂)) . ,(cdr p̂)))))

((odd? (car l))
(let ((p ((remberevensXcountevens (cdr l)) s)))

‘(,(cons (car l) (car p)) . ,(cdr p))))
(else
(let ((p ((remberevensXcountevens (cdr l)) s)))

‘(,(car p) . ,(add1 (cdr p)))))))))

The last step is to uncurry our definition. Now instead of taking two arguments, one at a time, it takes
them at the same time, and furthermore, we can see that the state enters and exits from all the calls to
remberevensXcountevens.

36. Uncurry.

(define remberevensXcountevens
(λ (l s)

(cond
((null? l) ‘(() . ,s))
((list?? (car l))
(let ((p (remberevensXcountevens (car l) s)))

(let ((p̂ (remberevensXcountevens (cdr l) (cdr p))))
‘(,(cons (car p) (car p̂)) . ,(cdr p̂)))))

((odd? (car l))
(let ((p (remberevensXcountevens (cdr l) s)))

‘(,(cons (car l) (car p)) . ,(cdr p))))
(else
(let ((p (remberevensXcountevens (cdr l) s)))

‘(,(car p) . ,(add1 (cdr p))))))))

> (remberevensXcountevens ’(2 3 (7 4 5 6) 8 (9) 2) 0)
((3 (7 5) (9)) . 5)

If we work the thirty-six steps backwards (and it is obvious that we can) from here, we will discover
exactly where the state monad (unitstate and starstate) might have come from.

31

13 Conclusion

We have used the “Wadler” (http://homepages.inf.ed.ac.uk/wadler/topics/monads.html) approach
to explaining monads from “The Essence of Functional Programming”. But, there are differences. Wadler
uses bind whereas I, like Moggi, use star8; Wadler shows how to extend an interpreter whereas I show how
to extend “The Little Schemer” programs; Wadler assumes a reading knowledge of Haskell whereas I assume
knowledge of functions as values and a reading knowledge of Scheme. In the final analysis, I believe my
approach to be clearer for the novice and Wadler’s appraoch to be clearer for the more sophisticated reader.

14 Acknowledgements

I have had conversations over the years with various people about monads, but some stand out as important
as I developed my own way of explaining them. I want to thank, in alphabetical order, Michael Adams, David
Bender, Will Byrd, Matthias Felleisen, Robby Findler, Steve Ganz, Ron Garcia, Roshan James, Ramana
Kumar, Ed Kmett, Joe Near, Jiho Kim, Oleg Kiselyov, Anurag Mendhekar, Chung-Chieh Shan, Amr Sabry,
Jeremy Seik, Jonathan Sobel, Larisse Voufo, and Mitch Wand. I am grateful for the tutorial papers by Phil
Wadler, the tutorial by Jeff Newbern, and the stunningly clear paper by Eugenio Moggi that I mentioned
above. I want to thank the c311/b521 dream team (Fall, 09) Lindsey Kuper, Nilesh Mahajan, Melanie
Dybvig, and especially Adam Foltzer. This team convinced me that we should be able to teach this material
to undergraduates.

8
As pointed out above, this is basically a syntactic difference, but I chose star rather than bind because using bind looks too

much like writing in continuation-passing style, and although the word “bind” works well once you understand the concept, it

brings to mind too many associations like let, which can easily lull the reader into a false sense of understanding.

32

